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For a quantum system, a density matrix ρ that is not pure can arise, via averaging, from
a distribution µ of its wave function, a normalized vector belonging to its Hilbert space
H . While ρ itself does not determine a unique µ, additional facts, such as that the
system has come to thermal equilibrium, might. It is thus not unreasonable to ask, which
µ, if any, corresponds to a given thermodynamic ensemble? To answer this question we
construct, for any given density matrix ρ, a natural measure on the unit sphere in H ,
denoted GAP (ρ). We do this using a suitable projection of the Gaussian measure on
H with covariance ρ. We establish some nice properties of GAP (ρ) and show that this
measure arises naturally when considering macroscopic systems. In particular, we argue
that it is the most appropriate choice for systems in thermal equilibrium, described by
the canonical ensemble density matrix ρβ = (1/Z ) exp(−β H ). GAP (ρ) may also be
relevant to quantum chaos and to the stochastic evolution of open quantum systems,
where distributions on H are often used.

KEY WORDS: Canonical ensemble in quantum theory; probability measures on
Hilbert space; Gaussian measures; density matrices.

1. INTRODUCTION

In classical mechanics, ensembles, such as the microcanonical and canonical
ensembles, are represented by probability distributions on the phase space. In
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quantum mechanics, ensembles are usually represented by density matrices. It is
natural to regard these density matrices as arising from probability distributions on
the (normalized) wave functions associated with the thermodynamical ensembles,
so that members of the ensemble are represented by a random state vector. There
are, however, as is well known, many probability distributions which give rise
to the same density matrix, and thus to the same predictions for experimental
outcomes [Ref. 27, Sec. IV.3].5 Moreover, as emphasized by Landau and Lifshitz
[Ref. 13, Sec. I.5], the energy levels for macroscopic systems are so closely spaced
(exponentially small in the number of particles in the system) that “the concept of
stationary states [energy eigenfunctions] becomes in a certain sense unrealistic”
because of the difficulty of preparing a system with such a sharp energy and
keeping it isolated. Landau and Lifshitz are therefore wary of, and warn against,
regarding the density matrix for such a system as arising solely from our lack
of knowledge about the wave function of the system. We shall argue, however,
that despite these caveats such distributions can be both useful and physically
meaningful. In particular we describe here a novel probability distribution, to be
associated with any thermal ensemble such as the canonical ensemble.

While probability distributions on wave functions are natural objects of study
in many contexts, from quantum chaos(3,12,25) to open quantum systems,(4) our
main motivation for considering them is to exploit the analogy between classical
and quantum statistical mechanics.(14–16,22,23,28) This analogy suggests that some
relevant classical reasonings can be transferred to quantum mechanics by formally
replacing the classical phase space by the unit sphere S(H ) of the quantum sys-
tem’s Hilbert space H . In particular, with a natural measure µ(dψ) on S(H ) one
can utilize the notion of typicality, i.e., consider properties of a system common to
“almost all” members of an ensemble. This is a notion frequently used in equilib-
rium statistical mechanics, as in, e.g., Boltzmann’s recognition that typical phase
points on the energy surface of a macroscopic system are such that the empiri-
cal distribution of velocities is approximately Maxwellian. Once one has such a
measure for quantum systems, one could attempt an analysis of the second law of
thermodynamics in quantum mechanics along the lines of Boltzmann’s analysis of
the second law in classical mechanics, involving an argument to the effect that the
behavior described in the second law (such as entropy increase) occurs for typical
states of an isolated macroscopic system, i.e. for the overwhelming majority of
points on S(H ) with respect to µ(dψ).

5 This empirical equivalence should not too hastily be regarded as implying physical equivalence.
Consider, for example, the two Schrödinger’s cat states �± = (�alive ± �dead)/

√
2. The measure that

gives equal weight to these two states corresponds to the same density matrix as the one giving equal
weight to �alive and �dead. However the physical situation corresponding to the former measure, a
mixture of two grotesque superpositions, seems dramatically different from the one corresponding to
the latter, a routine mixture. It is thus not easy to regard these two measures as physically equivalent.
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Probability distributions on wave functions of a composite system, with
Hilbert space H , have in fact been used to establish the typical properties of
the reduced density matrix of a subsystem arising from the wave function of the
composite. For example, Page(19) considers the uniform distribution on S(H ) for
a finite-dimensional Hilbert space H , in terms of which he shows that the von
Neumann entropy of the reduced density matrix is typically nearly maximal under
appropriate conditions on the dimensions of the relevant Hilbert spaces.

Given a probability distribution µ on the unit sphere S(H ) of the Hilbert
space H there is always an associated density matrix ρµ

(27): it is the density matrix
of the mixture, or the statistical ensemble of systems, defined by the distribution
µ, given by

ρµ =
∫

S(H )
µ(dψ) |ψ〉〈ψ |. (1)

For any projection operator P , tr(ρµ P) is the probability of obtaining in an experi-
ment a result corresponding to P for a system with a µ-distributed wave function.
It is evident from (1) that ρµ is the second moment, or covariance matrix, of µ,
provided µ has mean 0 (which may, and will, be assumed without loss of generality
since ψ and −ψ are equivalent physically).

While a probability measure µ on S(H ) determines a unique density matrix
ρ on H via (1), the converse is not true: the association µ �→ ρµ given by (1) is
many-to-one.6 There is furthermore no unique “physically correct” choice of µ

for a given ρ since for any µ corresponding to ρ one could, in principle, prepare an
ensemble of systems with wave functions distributed according to this µ. However,
while ρ itself need not determine a unique probability measure, additional facts
about a system, such as that it has come to thermal equilibrium, might. It is
thus not unreasonable to ask: which measure on S(H ) corresponds to a given
thermodynamic ensemble?

Let us start with the microcanonical ensemble, corresponding to the energy
interval [E, E + δ], where δ is small on the macroscopic scale but large enough
for the interval to contain many eigenvalues. To this there is associated the spectral
subspace HE,δ , the span of the eigenstates |n〉 of the Hamiltonian H corresponding
to eigenvalues En between E and E + δ. Since HE,δ is finite dimensional, one

6 For example, in a k-dimensional Hilbert space the uniform probability distribution u = uS(H ) over
the unit sphere has density matrix ρu = 1

k I with I the identity operator on H ; at the same time,
for every orthonormal basis of H the uniform distribution over the basis (which is a measure
concentrated on just k points) has the same density matrix, ρ = 1

k I . An exceptional case is the
density matrix corresponding to a pure state, ρ = |ψ〉〈ψ |, as the measure µ with this density matrix
is almost unique: it must be concentrated on the ray through ψ , and thus the only non-uniqueness
corresponds to the distribution of the phase.
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can form the microcanonical density matrix

ρE,δ = (dim HE,δ)−1 PHE,δ
(2)

with PHE,δ
= 1[E,E+δ](H ) the projection to HE,δ . This density matrix is diagonal

in the energy representation and gives equal weight to all energy eigenstates in the
interval [E, E + δ].

But what is the corresponding microcanonical measure? The most plausible
answer, given long ago by Schrödinger(22,23) and Bloch,(28) is the (normalized)
uniform measure uE,δ = uS(HE,δ) on the unit sphere in this subspace. ρE,δ is
associated with uE,δ via (1).

Note that a wave function � chosen at random from this distribution is almost
certainly a nontrivial superposition of the eigenstates |n〉, with random coefficients
〈 n|�〉 that are identically distributed, but not independent. The measure uE,δ is
clearly stationary, i.e., invariant under the unitary time evolution generated by H ,
and it is as spread out as it could be over the set S(HE,δ) of allowed wave functions.
This measure provides us with a notion of a “typical wave function” from HE,δ

which is very different from the one arising from the measure µE,δ that, when
H is nondegenerate, gives equal probability (dim HE,δ)−1 to every eigenstate |n〉
with eigenvalue En ∈ [E, E + δ]. The measure µE,δ , which is concentrated on
these eigenstates, is, however, less robust to small perturbations in H than is the
smoother measure uE,δ .

Our proposal for the canonical ensemble is in the spirit of the uniform
microcanonical measure uE,δ and reduces to it in the appropriate cases. It is based
on a mathematically natural family of probability measures µ on S(H ). For every
density matrix ρ on H , there is a unique member µ of this family, satisfying (1) for
ρµ = ρ, namely the Gaussian adjusted projected measure GAP (ρ) constructed
roughly as follows: Eq. (1) (i.e., the fact that ρµ is the covariance of µ) suggests
that we start by considering the Gaussian measure G(ρ) with covariance ρ (and
mean 0), which could, in finitely many dimensions, be expressed by G(ρ)(dψ) ∝
exp(−〈ψ |ρ−1|ψ〉)dψ (where dψ is the obvious Lebesgue measure on H ).7 This
is not adequate, however, since the measure that we seek must live on the sphere
S(H ) whereas G(ρ) is spread out over all of H . We thus adjust and then project
G(ρ) to S(H ), in the manner described in Sec. 2, in order to obtain the measure
GAP (ρ), having the prescribed covariance ρ as well as other desirable properties.

It is our contention that a quantum system in thermal equilibrium at inverse
temperature β should be described by a random state vector whose distribution
is given by the measure GAP (ρβ) associated with the density matrix for the

7 Berry (3) has conjectured, and for some cases proven, that such measures describe interesting universal
properties of chaotic energy eigenfunctions in the semiclassical regime, see also Refs. 12, 25. It is
perhaps worth considering the possibility that the GAP measures described here provide somewhat
better candidates for this purpose.
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canonical ensemble,

ρβ = ρH ,H,β = 1

Z
exp(−βH ) with Z := tr exp(−βH ). (3)

In order to convey the significance of GAP (ρ) as well as the plausibility
of our proposal that GAP (ρβ) describes thermal equilibrium, we recall that a
system described by a canonical ensemble is usually regarded as a subsystem of
a larger system. It is therefore important to consider the notion of the distribution
of the wave function of a subsystem. Consider a composite system in a pure
state ψ ∈ H1 ⊗ H2, and ask what might be meant by the wave function of the
subsystem with Hilbert space H1. For this we propose the following. Let {|q2〉} be
a (generalized) orthonormal basis of H2 (playing the role, say, of the eigenbasis
of the position representation). For each choice of |q2〉, the (partial) scalar product
〈q2|ψ〉, taken in H2, is a vector belonging to H1. Regarding |q2〉 as random, we
are led to consider the random vector �1 ∈ H1 given by

�1 = N 〈Q2|ψ〉 (4)

where N = N (ψ, Q2) = ‖〈Q2|ψ〉‖−1 is the normalizing factor and |Q2〉 is a
random element of the basis {|q2〉}, chosen with the quantum distribution

P(Q2 = q2) = ‖〈q2|ψ〉‖2. (5)

We refer to �1 as the conditional wave function(6) of system 1. Note that �1

becomes doubly random when we start with a random wave function in H1 ⊗ H2

instead of a fixed one.
The distribution of �1 corresponding to (4) and (5) is given by the probability

measure on S(H1)

µ1(dψ1) = P(�1 ∈ dψ1) =
∑

q2

‖〈q2|ψ〉‖2δ (ψ1 − N (ψ, q2)〈q2|ψ〉) dψ1, (6)

where δ(ψ − φ)dψ denotes the “delta” measure concentrated at φ. While the
density matrix ρµ1 associated with µ1 always equals the reduced density matrix
ρred

1 of system 1, given by

ρred
1 = tr2|ψ〉〈ψ | =

∑
q2

〈q2|ψ〉〈ψ |q2〉, (7)

the measure µ1 itself usually depends on the choice of the basis {|q2〉}. It turns out,
nevertheless, as we point out in Sec. 5.1, that µ1(dψ1) is a universal function of
ρred

1 in the special case that system 2 is large and ψ is typical (with respect to the
uniform distribution on all wave functions with the same reduced density matrix),
namely GAP (ρred

1 ). Thus GAP (ρ) has a distinguished, universal status among all
probability measures on S(H ) with density matrix ρ.
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To further support our claim that GAP (ρβ) is the right measure for ρβ ,
we shall regard, as is usually done, the system described by ρβ as coupled to a
(very large) heat bath. The interaction between the heat bath and the system is
assumed to be (in some suitable sense) negligible. We will argue that if the wave
function ψ of the combined “system plus bath” has microcanonical distribution
uE,δ , then the distribution of the conditional wave function of the (small) system
is approximately GAP (ρβ); see Sec. 4.

Indeed, a stronger statement is true. As we argue in Sec. 5.2, even for a
typical fixed microcanonical wave function ψ of the composite, i.e., one typical
for uE,δ , the conditional wave function of the system, defined in (4), is then
approximately GAP (ρβ)-distributed, for a typical basis {|q2〉}. This is related to
the fact that for a typical microcanonical wave function ψ of the composite the
reduced density matrix for the system is approximately ρβ

(8,20,21,23). Note that the
analogous statement in classical mechanics would be wrong: for a fixed phase
point ξ of the composite, be it typical or atypical, the phase point of the system
could never be random, but rather would merely be the part of ξ belonging to the
system.

The remainder of this paper is organized as follows. In Sec. 2 we define the
measure GAP (ρ) and obtain several ways of writing it. In Sec. 3 we describe
some natural mathematical properties of these measures, and suggest that these
properties uniquely characterize the measures. In Sec. 4 we argue that GAP (ρβ)
represents the canonical ensemble. In Sec. 5 we outline the proof that GAP (ρ)
is the distribution of the conditional wave function for most wave functions in
H1 ⊗ H2 with reduced density matrix ρ if system 2 is large, and show that
GAP (ρβ) is the typical distribution of the conditional wave function arising from
a fixed microcanonical wave function of a system in contact with a heat bath.
In Sec. 6 we discuss other measures that have been or might be considered as
the thermal equilibrium distribution of the wave function. Finally, in Sec. 7 we
compute explicitly the distribution of the coefficients of a GAP (ρβ)-distributed
state vector in the simplest possible example, the two-level system.

2. DEFINITION OF GAP(ρ)

In this section, we define, for any given density matrix ρ on a (separable)
Hilbert space H , the Gaussian adjusted projected measure GAP (ρ) on S(H ).
This definition makes use of two auxiliary measures, G(ρ) and GA(ρ), defined as
follows.

G(ρ) is the Gaussian measure on H with covariance matrix ρ (and mean 0).
More explicitly, let {|n〉} be an orthonormal basis of eigenvectors of ρ and pn the
corresponding eigenvalues,

ρ =
∑

n

pn|n〉〈n|. (8)
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Such a basis exists because ρ has finite trace. Let Zn be a sequence of independent
complex-valued random variables having a (rotationally symmetric) Gaussian
distribution in C with mean 0 and variance

E|Zn|2 = pn (9)

(where E means expectation), i.e., Re Zn and Im Zn are independent real Gaussian
variables with mean zero and variance pn/2. We define G(ρ) to be the distribution
of the random vector

�G :=
∑

n

Zn|n〉. (10)

Note that �G is not normalized, i.e., it does not lie in S(H ). In order that �G lie
in H at all, we need that the sequence Zn be square-summable,

∑
n |Zn|2 < ∞.

That this is almost surely the case follows from the fact that E
∑

n |Zn|2 is finite.
In fact,

E

∑
n

|Zn|2 =
∑

n

E|Zn|2 =
∑

n

pn = tr ρ = 1. (11)

More generally, we observe that for any measure µ on H with (mean 0 and)
covariance given by the trace class operator C ,

∫
H

µ(dψ) |ψ〉〈ψ | = C,

we have that, for a random vector � with distribution µ, E‖�‖2 = tr C .
It also follows that �G almost surely lies in the positive spectral subspace

of ρ, the closed subspace spanned by those |n〉 with pn �= 0, or, equivalently, the
orthogonal complement of the kernel of ρ; we shall call this subspace support (ρ).
Note further that, since G(ρ) is the Gaussian measure with covariance ρ, it does
not depend (in the case of degenerate ρ) on the choice of the basis {|n〉} among
the eigenbases of ρ, but only on ρ.

Since we want a measure on S(H ) while G(ρ) is not concentrated on S(H )
but rather is spread out, it would be natural to project G(ρ) to S(H ). However,
since projecting to S(H ) changes the covariance of a measure, as we will point out
in detail in Sec. 3.1, we introduce an adjustment factor that exactly compensates for
the change of covariance due to projection. We thus define the adjusted Gaussian
measure GA(ρ) on H by

GA(ρ)(dψ) = ‖ψ‖2 G(ρ)(dψ). (12)

Since E‖�G‖2 = 1 by (11), GA(ρ) is a probability measure.
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Let �GA be a GA(ρ)-distributed random vector. We define GAP (ρ) to be
the distribution of

�GAP := �GA

‖�GA‖ = P(�GA) (13)

with P the projection to the unit sphere (i.e., the normalization of a vector),

P : H \ {0} → S(H ), P(ψ) = ‖ψ‖−1ψ. (14)

Putting (13) differently, for a subset B ⊆ S(H ),

GAP (ρ)(B) = GA(ρ)(R+ B) =
∫

R
+ B

G(ρ)(dψ) ‖ψ‖2 (15)

where R
+ B denotes the cone through B. More succinctly,

GAP (ρ) = P∗(GA(ρ)) = GA(ρ) ◦ P−1 (16)

where P∗ denotes the action of P on measures.
More generally, one can define for any measure µ on H the “adjust-and-

project” procedure: let A(µ) be the adjusted measure A(µ)(dψ) = ‖ψ‖2µ(dψ);
then the adjusted-and-projected measure is P∗(A(µ)) = A(µ) ◦ P−1, thus defin-
ing a mapping P∗ ◦ A from the measures on H with

∫
µ(dψ)‖ψ‖2 = 1 to the

probability measures on S(H ). We then have that GAP (ρ) = P∗(A(G(ρ))).
We remark that �GAP , too, lies in support (ρ) almost surely, and that P(�G)

does not have distribution GAP (ρ)—nor covariance ρ (see Sec. 3.1).
We can be more explicit in the case that ρ has finite rank k = dim support(ρ),

e.g. for finite-dimensional H : then there exists a Lebesgue volume measure λ on
support(ρ) = C

k and we can specify the densities of G(ρ) and GA(ρ),

dG(ρ)

dλ
(ψ) = 1

π kdet ρ+
exp(−〈ψ |ρ−1

+ |ψ〉), (17a)

dG A(ρ)

dλ
(ψ) = ‖ψ‖2

π kdet ρ+
exp(−〈ψ |ρ−1

+ |ψ〉), (17b)

with ρ+ the restriction of ρ to support(ρ). Similarly, we can express GAP (ρ)
relative to the (2k − 1)-dimensional surface measure u on S(support(ρ)),

dGAP (ρ)

du
(ψ) = 1

π kdetρ+

∫ ∞

0
dr r2k−1r2 exp(−r2〈ψ |ρ−1

+ |ψ〉) (18a)

= k!

2π k det ρ+
〈ψ |ρ−1

+ |ψ〉−k−1. (18b)

We note that

GAP (ρE,δ) = uE,δ, (19)
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where ρE,δ is the microcanonical density matrix given in (2) and uE,δ is the
microcanonical measure.

3. PROPERTIES OF GAP(ρ)

In this section we prove the following properties of GAP (ρ):

Property 1. The density matrix associated with GAP (ρ) in the sense of (1) is
ρ, i.e., ρGAP(ρ) = ρ.

Property 2. The association ρ �→ GAP (ρ) is covariant: For any unitary oper-
ator U on H ,

U∗GAP (ρ) = GAP (UρU ∗) (20)

where U ∗ = U−1 is the adjoint of U and U∗ is the action of U on measures,
U∗µ = µ ◦ U−1. In particular, GAP (ρ) is stationary under any unitary evolution
that preserves ρ.

Property 3. If � ∈ H1 ⊗ H2 has distribution GAP (ρ1 ⊗ ρ2) then, for any
basis {|q2〉} of H2, the conditional wave function �1 has distribution GAP (ρ1).
(“GAP of a product density matrix has GAP marginal.”)

We will refer to Property 3 by saying that the family of GAP measures is
hereditary. We note that when � ∈ H1 ⊗ H2 has distribution GAP (ρ) and ρ is
not a tensor product, the distribution of �1 need not be GAP (ρred

1 ) (as we will
show after the proof of Property 3).

Before establishing these properties let us formulate what they say about our
candidate GAP (ρβ) for the canonical distribution. As a consequence of Property
1, the density matrix arising from µ = GAP (ρβ) in the sense of (1) is the density
matrix ρβ . As a consequence of Property 2, GAP (ρβ) is stationary, i.e., invariant
under the unitary time evolution generated by H . As a consequence of Property
3, if � ∈ H = H1 ⊗ H2 has distribution GAP (ρH ,H,β) and systems 1 and 2
are decoupled, H = H1 ⊗ I2 + I1 ⊗ H2, where Ii is the identity on Hi , then the
conditional wave function �1 of system 1 has a distribution (in H1) of the same
kind with the same inverse temperature β, namely GAP (ρH1,H1,β). This fits well
with our claim that GAP (ρβ) is the thermal equilibrium distribution since one
would expect that if a system is in thermal equilibrium at inverse temperature β

then so are its subsystems.
We conjecture that the family of GAP measures is the only family of measures

satisfying Properties 1–3. This conjecture is formulated in detail, and established
for suitably continuous families of measures, in Sec. 6.2.
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The following lemma, proven in Sec. 3.3, is convenient for showing that a
random wave function is GAP-distributed:

Lemma 1. Let 
 be a measurable space, µ a probability measure on 
, and
� : 
 → H a Hilbert-space-valued function. If �(ω) is G(ρ)-distributed with
respect to µ(dω), then �(ω)/‖�(ω)‖ is GAP (ρ)-distributed with respect to
‖�(ω)‖2µ(dω).

3.1. The Density Matrix

In this subsection we establish Property 1. We then add a remark on the
covariance matrix.

Proof of Property 1. From (1) we find that

ρGAP(ρ) =
∫

S(H )
GAP (ρ)(dψ) |ψ〉〈ψ | = E

(|�GAP 〉〈�GAP |)

(13)= E
(‖�GA‖−2|�GA〉〈�GA|) =

∫
H

GA(ρ)(dψ) ‖ψ‖−2|ψ〉〈ψ |

(12)=
∫

H
G(ρ)(dψ) |ψ〉〈ψ | = ρ

because
∫
H G(ρ)(dψ)|ψ〉〈ψ | is the covariance matrix of G(ρ), which is ρ. (A

number above an equal sign refers to the equation used to obtain the equality.) �

3.1.1. Remark on the Covariance Matrix

The equation ρGAP(ρ) = ρ can be understood as expressing that GAP (ρ)
and G(ρ) have the same covariance. For a probability measure µ on H with mean
0 that need not be concentrated on S(H ), the covariance matrix Cµ is given by

Cµ =
∫

H
µ(dφ) |φ〉〈φ|. (21)

Suppose we want to obtain from µ a probability measure on S(H ) having
the same covariance. The projection P∗µ of µ to S(H ), defined by P∗µ(B) =
µ(R+ B) for B ⊆ S(H ), is not what we want, as it has covariance

CP∗µ =
∫

S(H )
P∗µ(dψ) |ψ〉〈ψ | =

∫
H

µ(dφ) ‖φ‖−2|φ〉〈φ| �= Cµ.

However, P∗(A(µ)) does the job: it has the same covariance. As a consequence, a
naturally distinguished measure on S(H ) with given covariance is the Gaussian
adjusted projected measure, the GAP measure, with the given covariance.
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3.2. GAP(ρ) is Covariant

We establish Property 2 and then discuss in more general terms under which
conditions a measure on S(H ) is stationary.

Proof of Property 2. Under a unitary transformation U , a Gaussian measure with
covariance matrix C transforms into one with covariance matrix UCU ∗. Since
‖Uφ‖2 = ‖φ‖2, GA(C) transforms into GA(UCU ∗); that is, U�GA

C and �GA
UCU ∗

are equal in distribution, and since ‖U�GA
C ‖ = ‖�GA

C ‖, we have that U�GAP
C

and �GAP
UCU ∗ are equal in distribution. In other words, GAP (C) transforms into

GAP (UCU ∗), which is what we claimed in (20). �

3.2.1. Stationarity

In this subsection we discuss a criterion for stationarity under the evolution
generated by H = ∑

n En|n〉〈n|. Consider the following property of a sequence
of complex random variables Zn:

The phases Zn/|Zn|, when they exist, are independent of the moduli |Zn|
and of each other, and are uniformly distributed on S

1 = {eiθ : θ ∈ R}. (22)

(The phase Zn/|Zn| exists when Zn �= 0.) Condition (22) implies that the
distribution of the random vector � = ∑

n Zn|n〉 is stationary, since Zn(t) =
exp(−i Ent/h)Zn(0). Note also that (22) implies that the distribution has mean 0.

We show that the Zn = 〈n|�GAP 〉 have property (22). To begin with, the
Zn = 〈n|�G〉 obviously have this property since they are independent Gaussian
variables. Since the density of GA(ρ) relative to G(ρ) is a function of the moduli
alone, also the Zn = 〈n|�GA〉 satisfy (22). Finally, since the |〈n|�GAP 〉| are
functions of the |〈n|�GA〉| while the phases of the 〈n|�GAP 〉 equal the phases of
the 〈n|�GA〉, also the Zn = 〈n|�GAP 〉 satisfy (22).

We would like to add that (22) is not merely a sufficient, but also almost a
necessary condition (and morally a necessary condition) for stationarity. Since for
any �, the moduli |Zn| = |〈n|�〉| are constants of the motion, the evolution of �

takes place in the (possibly infinite-dimensional) torus{∑
n

|Zn|eiθn |n〉 : 0 ≤ θn < 2π

}
∼=

∏
n:Zn �=0

S
1, (23)

contained in S(H ). Independent uniform phases correspond to the uniform mea-
sure λ on

∏
n S

1. λ is the only stationary measure if the motion on
∏

n S
1 is

uniquely ergodic, and this is the case whenever the spectrum {En} of H is lin-
early independent over the rationals Q, i.e., when every finite linear combination∑

n rn En of eigenvalues with rational coefficients rn , not all of which vanish, is
nonzero, see Refs. 2, 26.
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This is true of generic Hamiltonians, so that λ is generically the unique
stationary distribution on the torus. But even when the spectrum of H is linearly
dependent, e.g. when there are degenerate eigenvalues, and thus further stationary
measures on the torus exist, these further measures should not be relevant to
thermal equilibrium measures, because of their instability against perturbations of
H , see Refs. 1, 11.

The stationary measure λ on
∏

n S
1 corresponds, for given moduli |Zn| or,

equivalently, by setting |Zn| = p(En)1/2 for a given probability measure p on the
spectrum of H , to a stationary measure λp on S(H ) that is concentrated on the
embedded torus (23). The measures λp are (for generic H ) the extremal stationary
measures, i.e., the extremal elements of the convex set of stationary measures, of
which all other stationary measures are mixtures.

3.3. GAP Measures and Gaussian Measures

Lemma 1 is more or less immediate from the definition of GAP (ρ). A more
detailed proof looks like this:

Proof of Lemma 1. By assumption the distribution µ ◦ �−1 of � with respect to µ

is G(ρ). Thus for the distribution of � with respect to µ′(dω) = ‖�(ω)‖2µ(dω),
we have µ′ ◦ �−1(dψ) = ‖ψ‖2µ ◦ �−1(dψ) = ‖ψ‖2G(ρ)(dψ) = GA(ρ)(dψ).
Thus, P(�(ω)) has distribution P∗GA(ρ) = GAP (ρ). �

3.4. Generalized Bases

We have already remarked in the introduction that the orthonormal basis
{|q2〉} of H2, used in the definition of the conditional wave function, could be a
generalized basis, such as a “continuous” basis, for which it is appropriate to write

I2 =
∫

dq2 |q2〉〈q2|

instead of the “discrete” notation

I2 =
∑

q2

|q2〉〈q2|

we used in (4)–(7).
We wish to elucidate this further. A generalized orthonormal basis {|q2〉 : q2 ∈

Q2} indexed by the set Q2 is mathematically defined by a unitary isomorphism
H2 → L2(Q2, dq2), where dq2 denotes a measure on Q2. We can think of Q2 as
the configuration space of system 2; as a typical example, system 2 may consist
of N2 particles in a box 
 ⊆ R

3, so that its configuration space is Q2 = 
N2 with
dq2 the Lebesgue measure (which can be regarded as obtained by combining N2
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copies of the volume measure on R
3).8 The formal ket |q2〉 then means the delta

function centered at q2; it is to be treated as (though strictly speaking it is not) an
element of H2.

The definition of the conditional wave function �1 then reads as fol-
lows: The vector ψ ∈ H1 ⊗ H2 can be regarded, using the isomorphism H2 →
L2(Q2, dq2), as a function ψ : Q2 → H1. Equation (4) is to be understood as
meaning

�1 = Nψ(Q2) (24)

where

N = N (ψ, Q2) = ‖ψ(Q2)‖−1

is the normalizing factor and Q2 is a random point in Q2, chosen with the quantum
distribution

P(Q2 ∈ dq2) = ‖ψ(q2)‖2dq2, (25)

which is how (5) is to be understood in this setting. As ψ is defined only up
to changes on a null set in Q2, �1 may not be defined for a particular Q2.
Its distribution in H1, however, is defined unambiguously by (24). In the most
familiar setting with H1 = L2(Q1, dq1), we have that (ψ(Q2))(q1) = ψ(q1, Q2).

In the following, we will allow generalized bases and use continuous instead
of discrete notation, and set 〈Q2|ψ〉 = ψ(Q2).

3.5. Distribution of the Wave Function of a Subsystem

Proof of Property 3. The proof is divided into four steps.

Step 1. We can assume that � = P(�GA) where �GA is a GA(ρ)-distributed ran-
dom vector in H = H1 ⊗ H2. We then have that �1 = P1 (〈Q2|�〉) =
P1

(〈Q2|�GA
〉
) where P1 is the normalization in H1, and where the dis-

tribution of Q2, given �GA, is

P(Q2 ∈ dq2|�GA) = ‖〈q2|�GA〉‖2

‖�GA‖2
dq2.

8 In fact, in the original definition of the conditional wave function in Ref. 6, q2 was supposed to be the
configuration, corresponding to the positions of the particles belonging to system 2. For our purposes
here, however, the physical meaning of the q2 is irrelevant, so that any generalized orthonormal basis
of H2 can be used.
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�GA and Q2 have a joint distribution given by the following measure ν

on H × Q2:

ν(dψ × dq2) = ‖〈q2|ψ〉‖2G(ρ)(dψ) dq2. (26)

Thus, what needs to be shown is that with respect to ν, P1(〈q2|ψ〉) is
GAP (ρ1)-distributed.

Step 2. If � ∈ H1 ⊗ H2 is G(ρ1 ⊗ ρ2)-distributed and q2 ∈ Q2 is fixed, then the
random vector f (q2) 〈q2|�〉 ∈ H1 with f (q2) = 〈q2|ρ2|q2〉−1/2 is G(ρ1)-
distributed. This follows, more or less, from the fact that a subset of a set of
jointly Gaussian random variables is also jointly Gaussian, together with
the observation that the covariance of 〈q2|�〉 is∫

H
G(ρ1 ⊗ ρ2)(dψ) 〈q2|ψ〉〈ψ |q2〉 = 〈q2|ρ1 ⊗ ρ2|q2〉 = ρ1〈q2|ρ2|q2〉.

More explicitly, pick an orthonormal basis {|ni 〉} of Hi consisting of
eigenvectors of ρi with eigenvalues p(i)

ni , and note that the vectors
|n1, n2〉 := |n1〉 ⊗ |n2〉 form an orthonormal basis of H = H1 ⊗ H2 con-
sisting of eigenvectors of ρ1 ⊗ ρ2 with eigenvalues pn1,n2 = p(1)

n1 p(2)
n2 . Since

the random variables Zn1,n2 := 〈n1, n2|�〉 are independent Gaussian ran-
dom variables with mean zero and variances E|Zn1,n2 |2 = pn1,n2 so are
their linear combinations

Z(1)n1 := 〈n1| f (q2)�(q2)〉 = f (q2)
∑

n2

〈q2|n2〉Zn1,n2

with variances (because variances add when adding independent Gaussian
random variables)

E|Z(1)n1 |2 = f 2(q2)
∑

n2

|〈q2|n2〉|2E|Zn1,n2 |2

= p(1)
n1

∑
n2

|〈q2|n2〉|2 p(2)
n2

〈q2|ρ2|q2〉 = p(1)
n1

.

Thus f (q2)〈q2|�〉 is G(ρ1)-distributed, which completes step 2.
Step 3. If � ∈ H1 ⊗ H 2 is G(ρ1 ⊗ ρ2)-distributed and Q2 ∈ Q2 is random

with any distribution, then the random vector f (Q2)〈Q2|�〉 is G(ρ1)-
distributed. This is a trivial consequence of step 2.

Step 4. Apply Lemma 1 as follows. Let 
 = H × Q2, �(ω) = �(ψ, q2) =
f (q2)〈q2|ψ〉, and µ(dψ × dq2) = G(ρ)(dψ)〈q2|ρ2|q2〉dq2 (which means
that q2 and ψ are independent). By step 3, the hypothesis of Lemma 1 (for
ρ = ρ1) is satisfied, and thus P1(�) = P1(〈q2|ψ〉) is GAP (ρ1)-distributed
with respect to

‖�(ω)‖2µ(dω) = f 2(q2)‖〈q2|ψ〉‖2G(ρ)(dψ)〈q2|ρ2|q2〉dq2 = ν(dω),
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where we have used that f 2(q2) = 〈q2|ρ2|q2〉−1. But this is, according to
step 1, what we needed to show. �

To verify the statement after Property 3, consider the density matrix ρ =
|�〉〈�| for a pure state � of the form � = ∑

n
√

pnψn ⊗ φn , where {ψn} and {φn}
are respectively orthonormal bases for H1 and H2 and the pn are nonnegative
with

∑
n pn = 1. Then a GAP (ρ)-distributed random vector � coincides with

� up to a random phase, and so ρred
1 = ∑

n pn|ψn〉〈ψn|. Choosing for {|q2〉} the
basis {φn}, the distribution of �1 is not GAP (ρred

1 ) but rather is concentrated on
the eigenvectors of ρred

1 . When the pn are pairwise-distinct this measure is the
measure EIG(ρred

1 ) we define in Sec. 6.1.1.

4. MICROCANONICAL DISTRIBUTION FOR A LARGE SYSTEM

IMPLIES THE DISTRIBUTION GAP (ρβ) FOR A SUBSYSTEM

In this section we use Property 3, i.e., the fact that GAP measures are hered-
itary, to show that GAP (ρβ) is the distribution of the conditional wave function
of a system coupled to a heat bath when the wave function of the composite is
distributed microcanonically, i.e., according to uE,δ .

Consider a system with Hilbert space H1 coupled to a heat bath with Hilbert
space H2. Suppose the composite system has a random wave function � ∈ H =
H1 ⊗ H2 whose distribution is microcanonical, uE,δ . Assume further that the
coupling is negligibly small, so that we can write for the Hamiltonian

H = H1 ⊗ I2 + I1 ⊗ H2, (27)

and that the heat bath is large (so that the energy levels of H2 are very close).
It is a well known fact that for macroscopic systems different equilibrium

ensembles, for example the microcanonical and the canonical, give approximately
the same answer for appropriate quantities. By this equivalence of ensembles,(17)

we should have that ρE,δ ≈ ρβ for suitable β = β(E). Then, since GAP(ρ) depends
continuously on ρ, we have that uE,δ = GAP (ρE,δ) ≈ GAP (ρβ). Thus we should
have that the distribution of the conditional wave function �1 of the system is
approximately the same as would be obtained when � is GAP(ρβ )-distributed.
But since, by (27), the canonical density matrix is then of the form

ρβ = ρH ,H,β = ρH1,H1,β ⊗ ρH2,H2,β , (28)

we have by Property 3 that �1 is approximately GAP(ρH1,H1,β)-distributed, which
is what we wanted to show.
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5. TYPICALITY OF GAP MEASURES

The previous section concerns the distribution of the conditional wave func-
tion �1 arising from the microcanonical distribution of the wave function of the
composite. It concerns, in other words, a random wave function of the composite.
The result there is the analogue, on the level of measures on Hilbert space, of the
well known result that if a microcanonical density matrix (2) is assumed for the
composite, the reduced density matrix ρred

1 of the system, defined as the partial
trace tr2 ρE,δ , is canonical if the heat bath is large.(13)

As indicated in the introduction, a stronger statement about the canonical
density matrix is in fact true, namely that for a fixed (nonrandom) wave function ψ

of the composite which is typical with respect to uE,δ, ρ
red
1 ≈ ρH1,H1,β when the

heat bath is large (see Refs. 8, 20, 21, 23; for a rigorous study of special cases of a
similar question, see Ref. 24).9 This stronger statement will be used in Sec. 5.2 to
show that a similar statement holds for the distribution of �1 as well, namely that
it is approximately GAP(ρH1,H1,β)-distributed for a typical fixed ψ ∈ HE,δ and
basis {|q2〉} of H2. But we must first consider the distribution of �1 for a typical
ψ ∈ H .

5.1. Typicality of GAP Measures for a Subsystem of a Large System

In this section we argue that for a typical wave function of a big system the
conditional wave function of a small subsystem is approximately GAP-distributed,
first giving a precise formulation of this result and then sketching its proof. We
give the detailed proof in Ref. 9.

5.1.1. Statement of the Result

Let H = H1 ⊗ H2 where H1 and H2 have respective dimensions k and m,
with k < m < ∞. For any given density matrix ρ1 on H1, consider the set

R(ρ1) = {ψ ∈ S(H ) : ρred
1 (ψ) = ρ1}, (29)

where ρred
1 (ψ) = tr2|ψ〉〈ψ | is the reduced density matrix for the wave function ψ .

There is a natural notion of (normalized) uniform measure uρ1 on R(ρ1); we give
its precise definition in Sec. 5.1.3.

We claim that for fixed k and large m, the distribution µ
ψ

1 of the conditional
wave function �1 of system 1, defined by (4) and (5) for a basis {|q2〉} of H2, is

9 It is a consequence of the results in Ref. 19 that when dim H2 → ∞, the reduced density matrix
becomes proportional to the identity on H1 for typical wave functions relative to the uniform
distribution on S(H ) (corresponding to uE,δ for E = 0 and H = 0).
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close to GAP(ρ1) for the overwhelming majority, relative to uρ1 , of vectors ψ ∈ H
with reduced density matrix ρ1. More precisely:
For every ε > 0 and every bounded continuous function f: S(H1) → R,

uρ1

{
ψ ∈ R(ρ1) : |µψ

1 ( f ) − GAP (ρ1)( f )| < ε
}

→ 1 as m → ∞, (30)

regardless of how the basis {|q2〉} is chosen.
Here we use the notation

µ( f ) :=
∫

S(H )
µ(dψ) f (ψ). (31)

5.1.2. Measure on H Versus Density Matrix

It is important to resist the temptation to translate uρ1 into a density matrix in
H . As mentioned in the introduction, to every probability measure µ on S(H )
there corresponds a density matrix ρµ in H , given by (1), which contains all
the empirically accessible information about an ensemble with distribution µ. It
may therefore seem a natural step to consider, instead of the measure µ = uρ1 ,
directly its density matrix ρµ = 1

m ρ1 ⊗ I2, where I2 is the identity on H2. But
since our result concerns properties of most wave functions relative to µ, it cannot
be formulated in terms of the density matrix ρµ. In particular, the corresponding
statement relative to another measure µ′ �= µ on S(H ) with the same density
matrix ρµ′ = ρµ could be false. Noting that ρµ has a basis of eigenstates that are
product vectors, we could, for example, take µ′ to be a measure concentrated on
these eigenstates. For any such state ψ , µ

ψ

1 is a delta-measure.

5.1.3. Outline of Proof

The result follows, by (5), Lemma 1, and the continuity of P∗ ◦ A, from the
corresponding statement about the Gaussian measure G(ρ1) on H1 with covariance
ρ1:

For every ε > 0 and every bounded continuous f : H1 → R,

uρ1

{
ψ ∈ R(ρ1) : |µ̄ψ

1 ( f ) − G(ρ1)( f )| < ε
}

→ 1 as m → ∞, (32)

where µ̄
ψ

1 is the distribution of
√

m〈Q2|ψ〉 ∈ H1 (not normalized) with respect
to the uniform distribution of Q2 ∈ {1, ..., m}.

We sketch the proof of (32) and give the definition of uρ1 . According to the
Schmidt decomposition, every ψ ∈ H can be written in the form

ψ =
∑

i

ciχi ⊗ φi , (33)



1214 Goldstein et al.

where {χi } is an orthonormal basis of H1, {φi } an orthonormal system in H 2,
and the ci are coefficients which can be assumed real and nonnegative. From (33)
one reads off the reduced density matrix of system 1,

ρred
1 =

∑
i

c2
i |χi 〉〈χi |. (34)

As the reduced density matrix is given, ρred
1 = ρ1, the orthonormal basis {χi } and

the coefficients ci are determined (when ρ1 is nondegenerate) as the eigenvectors
and the square-roots of the eigenvalues of ρ1, and R(ρ1) is in a natural one-to-
one correspondence with the set ONS(H2, k) of all orthonormal systems {φi } in
H 2 of cardinality k. (If some of the eigenvalues of ρ1 vanish, the one-to-one
correspondence is with ONS (H2, k ′) where k ′ = dim support(ρ1).) The Haar
measure on the unitary group of H2 defines the uniform distribution on the set of
orthonormal bases of H2, of which the uniform distribution on ONS (H2, k) is
a marginal, and thus defines the uniform distribution uρ1 on R(ρ1). (When ρ1 is
degenerate, uρ1 does not depend upon how the eigenvectors χi of ρ1 are chosen.)

The key idea for establishing (32) from the Schmidt decomposition (33)
is this: µ̄

ψ

1 is the average of m delta measures with equal weights, µ̄
ψ

1 =
m−1

∑
q2

δψ1(q2), located at the points

ψ1(q2) =
k∑

i=1

ci
√

m〈q2|φi 〉χi . (35)

Now regard ψ as random with distribution uρ1 ; then the ψ1(q2) are m random
vectors, and µ̄

ψ

1 is their empirical distribution. If the mk coefficients 〈q2|φi 〉
were independent Gaussian (complex) random variables with (mean zero and)
variance m−1, then the ψ1(q2) would be m independent drawings of a G(ρ1)-
distributed random vector; by the weak law of large numbers, their empirical
distribution would usually be close to G(ρ1); in fact, the probability that |µ̄ψ

1 ( f ) −
G(ρ1)( f )| < ε would converge to 1, as m → ∞.

However, when {φi } is a random orthonormal system with uniform distribu-
tion as described above, the expansion coefficients 〈q2|φi 〉 in the decomposition
of the φi ’s

φi =
∑

q2

〈q2|φi 〉|q2〉 (36)

will not be independent—since the φi ’s must be orthogonal and since ‖φi‖ = 1.
Nonetheless, replacing the coefficients 〈q2|φi 〉 in (36) by independent Gaussian
coefficients ai (q2) as described above, we obtain a system of vectors

φ′
i =

∑
q2

ai (q2)|q2〉 (37)
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that, in the limit m → ∞, form a uniformly distributed orthonormal system:
‖φ′

i‖ → 1 (by the law of large numbers) and 〈φ′
i |φ′

j 〉 → 0 for i �= j (since a pair
of randomly chosen vectors in a high-dimensional Hilbert space will typically be
almost orthogonal). This completes the proof.

5.1.4. Reformulation

While this result suggests that GAP (ρβ) is the distribution of the conditional
wave function of a system coupled to a heat bath when the wave function of the
composite is a typical fixed microcanonical wave function, belonging to HE,δ , it
does not quite imply it. The reason for this is that HE,δ has measure 0 with respect
to the uniform distribution on H , even when the latter is finite-dimensional.
Nonetheless, there is a simple corollary, or reformulation, of the result that will
allow us to cope with microcanonical wave functions.

We have indicated that for our result the choice of basis {|q2〉} of H2 does
not matter. In fact, while µ

ψ

1 , the distribution of the conditional wave function �1

of system 1, depends upon both ψ ∈ H and the choice of basis {|q2〉} of H2,
the distribution of µ

ψ

1 itself, when ψ is uρ1 -distributed, does not depend upon the
choice of basis. This follows from the fact that for any unitary U on H2

〈U−1q2|ψ〉 = 〈q2|I1 ⊗ Uψ〉 (38)

(and the invariance of the Haar measure of the unitary group of H2 under left
multiplication). It similarly follows from (38) that for fixed ψ ∈ H , the distribu-
tion of µ

ψ

1 arising from the uniform distribution ν of the basis {|q2〉} in the set
ONB (H2) of all orthonormal bases of H2, is the same as the distribution of µ

ψ

1
arising from the uniform distribution uρ1 of ψ with a fixed basis (and the fact
that the Haar measure is invariant under U �→ U−1). We thus have the following
corollary:

Let ψ ∈ H and let ρ1 = tr2|ψ〉〈ψ | be the corresponding reduced density
matrix for system 1. Then for a typical basis {|q2〉} of H2, the conditional wave
function �1 of system 1 is approximately GAP (ρ1)-distributed when m is large:
For every ε > 0 and every bounded continuous function f: S(H1) → R,

ν
{{|q2〉} ∈ ONB (H2) : |µψ

1 ( f ) − GAP (ρ1)( f )| < ε
} → 1 (39)

as dim(H2) → ∞.

5.2. Typicality of GAP(ρβ) for a Subsystem of a Large System in the

Microcanonical Ensemble

It is an immediate consequence of the result of Sec. 5.1.4 that for any fixed
microcanonical wave function ψ for a system coupled to a (large) heat bath,
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the conditional wave function �1 of the system will be approximately GAP-
distributed. When this is combined with the “canonical typicality” described near
the beginning of Sec. 5, we obtain the following result:

Consider a system with finite-dimensional Hilbert space H1 coupled to a
heat bath with finite-dimensional Hilbert space H2. Suppose that the coupling
is weak, so that we can write H = H1 ⊗ I2 + I1 ⊗ H2 on H = H1 ⊗ H2, and
that the heat bath is large, so that the eigenvalues of H2 are close. Then for any
wave function ψ that is typical relative to the microcanonical measure uE,δ , the
distribution µ

ψ

1 of the conditional wave function �1, defined by (4) and (5) for a
typical basis {|q2〉} of the heat bath, is close to GAP (ρβ) for suitable β = β(E),
where ρβ = ρH1,H1,β . In other words, in the thermodynamic limit, in which the
volume V of the heat bath and dim(H2) go to infinity and E/V = e is constant, we
have that for all ε, δ > 0, and for all bounded continuous functions f: S(H1) → R,

uE,δ × ν
{
(ψ, {|q2〉}) ∈ S(H ) × ONB (H2) :

|µψ

1 ( f ) − GAP (ρβ)( f )| < ε
} → 1 (40)

where β = β(e).
We note that if {|q2〉} were an energy eigenbasis rather than a typical basis,

the result would be false.

6. REMARKS

6.1. Other Candidates for the Canonical Distribution

We review in this section other distributions that have been, or may be,
considered as possible candidates for the distribution of the wave function of a
system from a canonical ensemble.

6.1.1. A Distribution on the Eigenvectors

One possibility, which goes back to von Neumann [27, p. 329], is to consider
µ(dψ) as concentrated on the eigenvectors of ρ; we denote this distribution EIG(ρ)
after the first letters of “eigenvector”; it is defined as follows. Suppose first that ρ is
nondegenerate. To select an EIG(ρ)-distributed vector, pick a unit eigenvector |n〉,
so that ρ|n〉 = pn|n〉, with probability pn and randomize its phase. This definition
can be extended in a natural way to degenerate ρ:

EIG(ρ) =
∑

p∈spec(ρ)

p dim Hp uS(Hp), (41)

where Hp denotes the eigenspace of ρ associated with eigenvalue p. The measure
EIG(ρ) is concentrated on the set ∪pHp of eigenvectors of ρ, which for the
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canonical ρ = ρH ,H,β coincides with the set of eigenvectors of H ; it is a mixture
of the microcanonical distributions uS(Hp) on the eigenspaces of H in the same
way as in classical mechanics the canonical distribution on phase space is a mixture
of the microcanonical distributions.

Note that EIG(ρE,δ) = uE,δ , and that in particular EIG(ρE,δ) is not, when H
is nondegenerate, the uniform distribution µE,δ on the energy eigenstates with
energies in [E, E + δ], against which we have argued in the introduction.

The distribution EIG(ρ) has the same properties as those of GAP(ρ) described
in Properties 1–3, except when ρ is degenerate:

The measures EIG(ρ) are such that (a) they have the right density ma-
trix: ρEIG(ρ) = ρ; (b) they are covariant: U∗ EIG(ρ) = EIG(UρU ∗); (c) they are
hereditary at nondegenerate ρ: when H = H1 ⊗ H2 and ρ is nondegenerate
and uncorrelated, ρ = ρ1 ⊗ ρ2, then EIG(ρ) has marginal (i.e., distribution of the
conditional wave function) EIG(ρ1).

Proof. (a) and (b) are obvious. For (c) let, for i = 1, 2, |ni 〉 be a basis consisting
of eigenvectors of ρi with eigenvalues p(i)

ni . Note that the tensor products |n1〉 ⊗
|n2〉 are eigenvectors of ρ with eigenvalues p(1)

n1 p(2)
n2 , and by nondegeneracy all

eigenvectors of ρ are of this form up to a phase factor. Since an EIG(ρ)-distributed
random vector � is almost surely an eigenvector of ρ, we have � = ei�|N1〉|N2〉
with random N1, N2, and �. The conditional wave function �1 is, up to the phase,
the eigenvector |N1〉 of ρ1 occurring as the first factor in �. The probability of
obtaining N1 = n1 is

∑
n2

p(1)
n1 p(2)

n2 = p(1)
n1 .10 �

In contrast, for a degenerate ρ = ρ1 ⊗ ρ2 the conditional wave function need
not be EIG(ρ1)-distributed, as the following example shows. Suppose ρ1 and
ρ2 are nondegenerate but p(1)

n1 p(2)
n2 = p(1)

m1 p(2)
m2 for some n1 �= m1; then an EIG(ρ)-

distributed �, whenever it happens to be an eigenvector associated with eigenvalue
p(1)

n1 p(2)
n2 , is of the form c|n1〉|n2〉 + c′|m1〉|m2〉, almost surely with nonvanishing

coefficients c and c′; as a consequence, the conditional wave function is a multiple
of c|n1〉〈Q2|n2〉 + c′|m1〉〈Q2|m2〉, which is, for typical Q2 and unless |n2〉 and
|m2〉 have disjoint supports, a nontrivial superposition of eigenvectors |n1〉, |m1〉
with different eigenvalues—and thus cannot arise from the EIG(ρ1) distribution.11

10 The relevant condition for (c) follows from nondegeneracy but is weaker: it is that the eigenvalues

of ρ1 and ρ2 are multiplicatively independent, in the sense that p(1)
n1 p(2)

n2 = p(1)
m1 p(2)

m2 can occur only

trivially, i.e., when p(1)
n1 = p(1)

m1 and p(2)
n2 = p(2)

m2 . In particular, the nondegeneracy of ρ1 and ρ2 is
irrelevant.

11 A property weaker than (c) does hold for EIG(ρ) also in the case of the degeneracy of ρ = ρ1 ⊗
ρ2: if the orthonormal basis {|q2〉} used in the definition of conditional wave function consists of
eigenvectors of ρ2, then the distribution of the conditional wave function is EIG(ρ1).
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Note also that EIG(ρ) is discontinuous as a function of ρ at every degenerate
ρ; in other words, EIG(ρH ,H,β ) is, like µE,δ , unstable against small perturbations
of the Hamiltonian. (And, as with µE,δ , this fact, quite independently of the
considerations on behalf of GAP-measures in Secs. 4 and 5, suggests against
using EIG(ρβ) as a thermal equilibrium distribution.) Moreover, EIG(ρ) is highly
concentrated, generically on a one-dimensional subset of S(H ), and in the case
of a finite-dimensional Hilbert space H fails to be absolutely continuous relative
to the uniform distribution uS(H ) on the unit sphere.

For further discussion of families µ(ρ) of measures satisfying the analogues
of Properties 1–3, see Sec. 6.2.

6.1.2. An Extremal Distribution

Here is another distribution on H associated with the density matrix ρ. Let
the random vector � be

� =
∑

p∈spec(ρ)

√
p�p, (42)

the � p being independent random vectors with distributions uS(Hp). In case
all eigenvalues are nondegenerate, this means the coefficients Zn of �, � =∑

n Zn|n〉, have independent uniform phases but fixed moduli |Zn| = √
pn—in

sharp contrast with the moduli when � is GAP(ρ)-distributed. And in contrast
to the measure EIG(ρ) considered in the previous subsection, the weights pn in
the density matrix now come from the fixed size of the coefficients of � when it
is decomposed into the eigenvectors of ρ, rather than from the probability with
which these eigenvectors are chosen. This measure, too, is stationary under any
unitary evolution that leaves ρ invariant. In particular, it is stationary in the ther-
mal case ρ = ρH ,H,β , and for generic H it is an extremal stationary measure as
characterized in Sec. 3.2.1; in fact it is, in the notation of the last paragraph of
Sec. 3.2.1, λp with p(En) = (1/Z ) exp(−βEn).

This measure, too, is highly concentrated: For a Hilbert space H of finite
dimension k, it is supported by a submanifold of real dimension 2k − m where m
is the number of distinct eigenvalues of H ; hence generically it is supported by a
submanifold of just half the dimension of H .

6.1.3. The Distribution of Guerra and Loffredo

In Ref. 10, Guerra and Loffredo consider the canonical density matrix ρβ for
the one-dimensional harmonic oscillator and want to associate with it a diffusion
process on the real line, using stochastic mechanics.(7,18) Since stochastic mechan-
ics associates a process with every wave function, they achieve this by finding a
measure µβ on S(L2(R)) whose density matrix is ρβ .
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They propose the following measure µβ , supported by coherent states. With
every point (q, p) in the classical phase space R

2 of the harmonic oscillator there
is associated a coherent state

ψq,p(x) = (2πσ 2)−1/4 exp

(
− (x − q)2

4σ 2
+ i

h
xp − i

2h
pq

)
(43)

with σ 2 = h/2mω, thus defining a mapping C : R
2 → S(L2(R)), C(q, p) = ψq,p.

Let H (q, p) = p2/2m + 1
2 mω2q2 be the classical Hamiltonian function, and con-

sider the classical canonical distribution at inverse temperature β ′,

ρclass
β ′ (dq × dp) = 1

Z ′ e
−β ′ H (q,p)dq dp, Z ′ =

∫
R

2
dq dp e−β ′ H (q,p). (44)

Let β ′ = eβh-ω−1
hω

. Then µβ = C∗ρclass
β ′ is the distribution on coherent states arising

from ρclass
β ′ . The density matrix of µβ is ρβ .(10)

This measure is concentrated on a 2-dimensional submanifold of S(L2(R)),
namely on the set of coherent states (the image of C). Note also that not every
density matrix ρ on L2(R) can arise as the density matrix of a distribution on the
set of coherent states; for example, a pure state ρ = |ψ〉〈ψ | can arise in this way
if and only if ψ is a coherent state.

6.1.4. The Distribution Maximizing an Entropy Functional

In a similar spirit, one may consider, on a finite-dimensional Hilbert space
H , the distribution γ (dψ) = f (ψ) uS(H )(dψ) that maximizes the Gibbs entropy
functional

G [ f ] = −
∫

S(H )
u(dψ) f (ψ) log f (ψ) (45)

under the constraints that γ be a probability distribution with mean 0 and covari-
ance ρH ,H,β :

f ≥ 0 (46a)∫
S(H )

u(dψ) f (ψ) = 1 (46b)∫
S(H )

u(dψ) f (ψ) |ψ〉 = 0 (46c)∫
S(H )

u(dψ) f (ψ) |ψ〉〈ψ | = ρH ,H,β . (46d)

A standard calculation using Lagrange multipliers leads to

f (ψ) = exp〈ψ |L|ψ〉 (47)
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with L a self-adjoint matrix determined by (46b) and (46d); comparison with (18b)
shows that γ is not a GAP measure. (We remark, however, that another Gibbs
entropy functional, G ′[ f ] = − ∫

H λ(dψ) f (ψ) log f (ψ), based on the Lebesgue
measure λ on H instead of uS(H ), is maximized, under the constraints that the
mean be 0 and the covariance be ρ, by the Gaussian measure, f (ψ) λ(dψ) =
G(ρ)(dψ).) There is no apparent reason why the family of γ measures should be
hereditary.

The situation is different for the microcanonical ensemble: here, the distribu-
tion uE,δ = GAP (ρE,δ) that we propose is in fact the maximizer of the appropriate
Gibbs entropy functional G ′′. Which functional is that? Since any measure γ (dψ)
on S(H ) whose covariance matrix is the projection ρE,δ = const. 1[E,E+δ](H )
must be concentrated on the subspace HE,δ and thus cannot be absolutely contin-
uous (possess a density) relative to uS(H ), we consider instead its density relative
to uS(HE,δ) = uE,δ , that is, we consider γ (dψ) = f (ψ) uE,δ(dψ) and set

G ′′[ f ] = −
∫

S(HE,δ)
uE,δ(dψ) f (ψ) log f (ψ). (48)

Under the constraints that the probability measure γ have mean 0 and covari-
ance ρE,δ , G ′′[ f ] is maximized by f ≡ 1, or γ = uE,δ; in fact even without the
constraints on γ , G ′′[ f ] is maximized by f ≡ 1.

6.1.5. The Distribution of Brody and Hughston

Brody and Hughston(5) have proposed the following distribution µ to describe
thermal equilibrium. They observe that the projective space arising from a finite-
dimensional Hilbert space, endowed with the dynamics arising from the unitary
dynamics on Hilbert space, can be regarded as a classical Hamiltonian system with
Hamiltonian function H (Cψ) = 〈ψ |H |ψ〉/〈ψ |ψ〉 (and symplectic form arising
from the Hilbert space structure). They then define µ to be the classical canon-
ical distribution of this Hamiltonian system, i.e., to have density proportional to
exp(−βH (Cψ)) relative to the uniform volume measure on the projective space
(which can be obtained from the symplectic form or, alternatively, from uS(H )

by projection from the sphere to the projective space). However, this distribution
leads to a density matrix, different from the usual one ρβ given by (3), that does
not describe the canonical ensemble.

6.2. A Uniqueness Result for GAP (ρ)

As EIG(ρ) is a family of measures satisfying Properties 1–3 for most density
matrices ρ, the question arises whether there is any family of measures, besides
GAP (ρ), satisfying these properties for all density matrices. We expect that the
answer is no, and formulate the following uniqueness conjecture: Given, for every
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Hilbert space H and every density matrix ρ on H , a probability measure µ(ρ)
on S(H ) such that Properties 1–3 remain true when GAP (ρ) is replaced by
µ(ρ), then µ(ρ) = GAP (ρ). In other words, we conjecture that µ = GAP (ρ) is
the only hereditary covariant inverse of (1).

This is in fact true when we assume in addition that the mapping µ : ρ �→
µ(ρ) is suitably continuous. Here is the argument: When ρ is a multiple of a
projection, ρ = (dim H ′)−1 PH ′ for a subspace H ′ ⊆ H , then µ(ρ) must be,
by covariance U∗µ(ρ) = µ(UρU ∗), the uniform distribution on S(H ′), and thus
µ(ρ) = GAP (ρ) in this case. Consider now a composite of a system (system 1) and
a large heat bath (system 2) with Hilbert space H = H1 ⊗ H2 and Hamiltonian
H = H1 ⊗ I2 + I1 ⊗ H2, and consider the microcanonical density matrix ρE,δ

for this system. By equivalence of ensembles, we have for suitable β > 0 that
ρE,δ ≈ ρH ,H,β = ρ

(1)
β ⊗ ρ

(2)
β where ρ

(i)
β = ρHi ,Hi ,β . By the continuity of µ and

GAP,

µ
(
ρ

(1)
β ⊗ ρ

(2)
β

)
≈ µ(ρE,δ) = GAP (ρE,δ) ≈ GAP

(
ρ

(1)
β ⊗ ρ

(2)
β

)
.

Now consider, for a wave function � with distribution µ(ρ(1)
β ⊗ ρ

(2)
β ) respectively

GAP (ρ(1)
β ⊗ ρ

(2)
β ), the distribution of the conditional wave function �1: by hered-

ity, this is µ(ρ(1)
β ) respectively GAP (ρ(1)

β ). Since the distribution of � is a continu-

ous function of the distribution of �, we thus have that µ(ρ(1)
β ) ≈ GAP (ρ(1)

β ). Since
we can make the degree of approximation arbitrarily good by making the heat bath
sufficiently large, we must have that µ(ρ(1)

β ) = GAP (ρ(1)
β ). For any density matrix

ρ on H1 that does not have zero among its eigenvalues, there is an H1 such that
ρ = ρ

(1)
β = Z−1 exp(−βH1) for β = 1, and thus we have that µ(ρ) = GAP (ρ)

for such a ρ; since these are dense, we have that µ(ρ) = GAP (ρ) for all density
matrices ρ on H1. Since H1 is arbitrary we are done.

6.3. Dynamics of the Conditional Wave Function

Markov processes in Hilbert space have long been considered (see Ref. 4 for
an overview), particularly diffusion processes and piecewise deterministic (jump)
processes. This is often done for the purpose of numerical simulation of a master
equation for the density matrix, or as a model of continuous measurement or of
spontaneous wave function collapse. Such processes could arise as follows.

Since the conditional wave function �1 arises from the wave function 〈q2|ψ〉
by inserting a random coordinate Q2 for the second variable (and normalizing),
any dynamics (i.e., time evolution) for Q2, described by a curve t �→ Q2(t) and
preserving the quantum probability distribution of Q2, for example, as given by
Bohmian mechanics,(6) gives rise to a dynamics for the conditional wave function,
t �→ �1(t) = N (t)〈Q2(t)|ψ(t)〉, where ψ(t) evolves according to Schrödinger’s
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equation and N (t) = ‖〈Q2(t)|ψ(t)〉‖−1 is the normalizing factor. In this way one
obtains a stochastic process (a random path) in S(H1). In the case considered
in Sec. 4, in which H2 corresponds to a large heat bath, this process must have
GAP (ρH1,H1,β) as an invariant measure. It would be interesting to know whether
this process is approximately a simple process in S(H1), perhaps a diffusion
process, perhaps one of the Markov processes on Hilbert space considered already
in the literature.

7. THE TWO-LEVEL SYSTEM AS A SIMPLE EXAMPLE

In this last section, we consider a two-level system, with H = C
2 and

H = E1|1〉〈1| + E2|2〉〈2|, (49)

and calculate the joint distribution of the energy coefficients Z1 = 〈1|�〉 and
Z2 = 〈2|�〉 for a GAP (ρβ)-distributed � as explicitly as possible. We begin with
a general finite-dimensional system, H = C

k , and specialize to k = 2 later.
One way of describing the distribution of � is to give its density relative to

the hypersurface area measure u on S(Ck); this we did in (18). Another way of
describing the joint distribution of the Zn is to describe the joint distribution of
their moduli |Zn|, or of |Zn|2, as the phases of the Zn are independent (of each
other and of the moduli) and uniformly distributed, see (22).

Before we determine the distribution of |Zn|2, we repeat that its expectation
can be computed easily. In fact, for any φ ∈ H we have

E
∣∣〈φ|�〉∣∣2 =

∫
S(H )

GAP (ρβ)(dψ)
∣∣〈φ|ψ〉∣∣2 (1)=〈φ|ρβ |φ〉 (3)= 1

Z (β)
〈φ|e−β H |φ〉.

Thus, for |φ〉 = |n〉, we obtain E|Zn|2 = e−βEn /tr e−β H .
For greater clarity, from now on we write ZGAP

n instead of Zn . A rela-
tion similar to that between GAP (ρ), G A(ρ), and G(ρ) holds between the joint
distributions of the |ZGAP

n |2, of the |Z G A
n |2, and of the |Z G

n |2. The joint dis-
tribution of the |Z G

n |2 is very simple: they are independent and exponentially
distributed with means pn = e−βEn /Z (β). Since the density of G A relative to G,
dG A/dG = ∑

n |zn|2, is a function of the moduli alone, and since, according to
(22), GA = GAphases × GAmoduli, we have that

GAmoduli =
∑

n

|zn|2Gmoduli.

Thus,

P
(|ZGA

1 |2 ∈ ds1, . . . , |ZGA
k |2 ∈ dsk

)
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Fig. 1. Plot of the distribution density function f (s) of |Z1|2, defined in (52c), for various values of
the parameter δ = exp(β(E2 − E1)): (a) δ = 1/3, (b) δ = 1/2, (c) δ = 1, (d) δ = 2, (e) δ = 3.

= s1 + · · · + sk

p1 · · · pk
exp

(
−

k∑
n=1

sn

pn

)
ds1 · · · dsk, (50)

where each sn ∈ (0,∞). Finally, the |ZGAP
n |2 arise by normalization,

|ZGAP
n |2 = |ZGA

n |2∑
n′ |ZGA

n′ |2 . (51)

We now specialize to the two-level system, k = 2. Since |ZGAP
1 |2 +

|ZGAP
2 |2 = 1, it suffices to determine the distribution of |ZGAP

1 |2, for which
we give an explicit formula in (52c) below. We want to obtain the marginal dis-
tribution of (51) from the joint distribution of the |ZGA

n |2 in (0,∞)2, the first
quadrant of the plane, as given by (50). To this end, we introduce new coordinates
in the first quadrant:

s = s1

s1 + s2
, λ = s1 + s2,

where λ > 0 and 0 < s < 1. Conversely, we have s1 = sλ and s2 = (1 − s)λ, and
the area element transforms according to

ds1ds2 =
∣∣∣∣det

∂(s1, s2)

∂(s, λ)

∣∣∣∣ ds dλ = λ ds dλ.

Therefore, using ∫ ∞

0
dλ λ2e−xλ = 2x−3 for x > 0,
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we obtain

P
(|ZGAP

1 |2 ∈ ds
) = ds

∫ ∞

0
dλ

eβtr H

Z (β)
λ2

× exp
(−λ(eβE1 s + eβE2 (1 − s))

)
(51a)

= 2eβtr H

Z (β)
(eβE1 s + eβE2 (1 − s))−3ds (51b)

= (α1s + α2(1 − s))−3ds =: f (s) ds, 0 < s < 1, (51c)

with α1 = (δ−1(δ−1 + 1)/2)1/3 and α2 = (δ(δ + 1)/2)1/3 for δ = exp(β(E2 −
E1)). The density f of the distribution (52c) of |ZGAP

1 |2 is depicted in Fig. 1
for various values of δ. For δ = 1, f is identically 1. For δ > 1, we have
α2 = δα1 > α1, so that α1s + α2(1 − s) is decreasing monotonically from α2 at
s = 0 to α1 at s = 1; hence, f is increasing monotonically from α−3

2 to α−3
1 . For

δ < 1, we have α2 < α1, and hence f is decreasing monotonically from α−3
2 to

α−3
1 . In all cases f is convex since f ′′ ≥ 0.
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We thank Andrea Viale (Università di Genova, Italy) for preparing the fig-
ure, Eugene Speer (Rutgers University, USA) for comments on an earlier version,
James Hartle (UC Santa Barbara, USA) and Hal Tasaki (Gakushuin University,
Tokyo, Japan) for helpful comments and suggestions, Eric Carlen (Georgia In-
stitute of Technology, USA), Detlef Dürr (LMU München, Germany), Raffaele
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